Learning theory approach to minimum error entropy criterion
نویسندگان
چکیده
We consider the minimum error entropy (MEE) criterion and an empirical risk minimization learning algorithm when an approximation of Rényi’s entropy (of order 2) by Parzen windowing is minimized. This learning algorithm involves a Parzen windowing scaling parameter. We present a learning theory approach for this MEE algorithm in a regression setting when the scaling parameter is large. Consistency and explicit convergence rates are provided in terms of the approximation ability and capacity of the involved hypothesis space. Novel analysis is carried out for the generalization error associated with Rényi’s entropy and a Parzen windowing function, to overcome technical difficulties arising from the essential differences between the classical least squares problems and the MEE setting. An involved symmetrized least squares error is introduced and analyzed, which is related to some ranking algorithms.
منابع مشابه
An Extended Result on the Optimal Estimation Under the Minimum Error Entropy Criterion
The minimum error entropy (MEE) criterion has been successfully used in fields such as parameter estimation, system identification and the supervised machine learning. There is in general no explicit expression for the optimal MEE estimate unless some constraints on the conditional distribution are imposed. A recent paper has proved that if the conditional density is conditionally symmetric and...
متن کاملQuantized Minimum Error Entropy Criterion
Comparing with traditional learning criteria, such as mean square error (MSE), the minimum error entropy (MEE) criterion is superior in nonlinear and non-Gaussian signal processing and machine learning. The argument of the logarithm in Renyis entropy estimator, called information potential (IP), is a popular MEE cost in information theoretic learning (ITL). The computational complexity of IP is...
متن کاملOn the Smoothed Minimum Error Entropy Criterion
Recent studies suggest that the minimum error entropy (MEE) criterion can outperform the traditional mean square error criterion in supervised machine learning, especially in nonlinear and non-Gaussian situations. In practice, however, one has to estimate the error entropy from the samples since in general the analytical evaluation of error entropy is not possible. By the Parzen windowing appro...
متن کاملConvergence of a Fixed-Point Minimum Error Entropy Algorithm
The minimum error entropy (MEE) criterion is an important learning criterion in information theoretical learning (ITL). However, the MEE solution cannot be obtained in closed form even for a simple linear regression problem, and one has to search it, usually, in an iterative manner. The fixed-point iteration is an efficient way to solve the MEE solution. In this work, we study a fixed-point MEE...
متن کاملSome Further Results on the Minimum Error Entropy Estimation
The minimum error entropy (MEE) criterion has been receiving increasing attention due to its promising perspectives for applications in signal processing and machine learning. In the context of Bayesian estimation, the MEE criterion is concerned with the estimation of a certain random variable based on another random variable, so that the error’s entropy is minimized. Several theoretical result...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of Machine Learning Research
دوره 14 شماره
صفحات -
تاریخ انتشار 2013